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Abstract— Sign language recognition remains a challenging 

area and may require a considerable amount of data to obtain 

satisfactory results. To overcome this, we use readily available 

motion text data in addition to videos for achieving recognition 

of unobserved classes during the training phase. Zero-Shot Sign 

Language Recognition (ZSSLR) with a novel technique is 

focused on this work, which learns a model from seen sign 

classes and recognizes unseen sign classes. To achieve this, the 

ASL-Text dataset is used which combines the video of word 

signs and descriptions in sign language dictionaries. Moreover, 

this dataset consists of sign language classes and their 

corresponding definitions in the sign language dictionary. In 

various Zero-Shot Learning (ZSL) applications, it is common 

for datasets to contain a limited number of examples for 

numerous classes across different domains. This makes the 

problem of sign language recognition extremely challenging. We 

try to overcome this by using a new approach which includes 

augmented data and hand landmarks. The experiment on 

augmented data resulted in 50.91 for top-5 accuracy. Hand 

landmarks are used with unaugmented data which is applied to 

average and LSTM deep learning layers resulting in 49.41 and 

48.21 for top-5 accuracies, respectively. 
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I. INTRODUCTION 

The objective of Sign Language Recognition (SLR) 
systems that have been created is to convert sign language into 
either text or speech, with the goal of enabling communication 
between deaf people and those who can hear. This process has 
a significant impact on society, but the complexity of hand and 
finger actions make SLR very challenging. The task of 
developing systems for recognizing sign language remains a 
formidable challenge. Although sign language definitions are 
well-defined and organized, slight variations in body posture, 
hand movements, facial expressions and hand positioning can 
drastically alter the intended meaning of the sign language [3], 
[4]. Distinguishing and annotating the well-established hand 
shapes within sign languages can prove to be a formidable 
task, especially in situations where there are variations in 
viewpoints [31]. Moreover, akin to how natural languages 
transform and incorporate diversity throughout history, sign 
languages also undergo modifications and accept variations as 
time passes. Therefore, a model that can adapt to these 
changes is needed. The current methods used for SLR 
necessitate a considerable quantity of labeled information for 
each class. [11], [12], [13], [17]. In this study, unseen sign 
language classes were recognized without annotated visual 
data by taking advantage of sign language descriptions. In this 
regard, Zero-shot Sign Language Recognition (ZSSLR) has 

been defined in [5]. Unlike normal supervised learning, the 
ZSSLR method tries to predict classes that are not seen in the 
training phase. Compared to common ZSL studies [6], [7], [8], 
[9], ASL-Text [5] dataset used in this study contains 
significantly fewer examples per class for training which 
makes this task a hard zero-shot learning problem [23]. In 
general, ZSSLR consists of two primary components. The first 
component focuses on the arrangement of visual information 
by utilizing 3D-CNN and LSTM to examine both the temporal 
and spatial structure. The second one is the ZSL component 
which contains text data. The system developed with these 
two components aims to learn the closest text description of 
the visual data. The ASL-Text dataset was created using easily 
accessible and expert-prepared sign language definitions of 
words in the sign language dictionary. In the current study, we 
improved the effort introduced in [5]. We applied data 
augmentation and hand landmarks extraction by feeding them 
to the deep learning layers such as mean layer and LSTM 
layer. The experimental results were evaluated by top-1, top-
2, and top-5 accuracies. The rest of the paper is proceeded as 
follows: The previous studies are examined in Section 2, the 
proposed approach is explained in Section 3, the applied 
experiments is presented in section 4, the results are discussed 
in Section 5 and the conclusion is addressed in Section 6. 

II. RELATED WORK 

SLR has been a subject of research for more than thirty 
years [32]. There are two main types of SLR techniques that 
have gained widespread popularity. These are (i) Isolated SLR 
[33], which focuses on recognizing individual instances of 
signs, and (ii) Continuous SLR [34], which aims to recognize 
all signs in sign language sequences. Our research falls under 
the category of Isolated SLR since we focus on recognizing 
individual sign instances. In the initial stages of SLR research, 
hand-crafted features were predominantly utilized in 
conjunction with classifiers such as support vector machines 
[33], [35]. Additionally, Conditional Random Fields, Hidden 
Markov Models (HMM), and neural network based 
techniques were also investigated as potential methods to 
model temporal patterns [36], [37]. More recently, various 
SLR methodologies have been proposed that leverage deep 
learning techniques [38], [39]. ZSL has garnered significant 
attention in the fields of learning and vision research in recent 
years, particularly after the groundbreaking works of Lampert 
et al. [40] and Farhadi et al. [6]. The majority of ZSL 
methodologies depend on transferring semantic knowledge 
from observed classes to those that have not been seen. In 
recent years, various studies have been conducted for action 
recognition based on semantic 
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embedding [42], regression [43], and many others [44], [45], 
[46], [1], [2].  

Bilge et al. [5] are the first ones who defined the ZSSLR 
problem and proposed a solution. They created the ASL-Text 
dataset by combining sign language videos with related text 
descriptions in the sign language dictionary, which is also 
used in this study. They divided the dataset into hand and body 
streams. They applied the embarrassingly simple zero-shot 
learning (ESZSL) [21], semantic auto encoder (SAE) [22], 
and logistic label embedding (LLE) [5] methods to the streams 
and obtained various results. The experiment in which they 
applied the LLE method by combining the hand and body 
streams gave the best result of 20.9% for top-1 accuracy. 

In their subsequent work [20], the authors enhanced the 
ASL-Text dataset by adding binary feature matrices in 
addition to the text descriptions used in the second component 
of the ZSSLR system. They also created two new benchmark 
datasets, MS-ZSSLR-W and MS-ZSSLR-C, and applied a 
shift-based CNN [24] in addition to the 3D-CNN and LSTM 
used in their previous work. They also introduced the problem 
of Generalized Zero-Shot Sign Language Recognition 
(GZSSLR), in which the model is trained to recognize both 
observed and unobserved classes. The results obtained in the 
study are given in two different settings: ZSL and generalized 
zero-shot learning (GZSL). ZSL setting achieved 31.3% and 
14.7%, the GZSL setting achieved 26.9% and 34.7% for top-
1 accuracies on ASL-Text and MS-ZSSLR-C datasets, 
respectively. 

III. METHODOLOGY 

The general structure of the developed architecture can be 
seen in Figure 1. In this section, first, the problem definition 
is presented and then solution methods are described. 

Problem definition: ZSSLR relies on two distinct 
information sources: a visual domain that comprises sign 
language videos and a textual domain consisting of 
explanations for the gestures and motions performed in these 
videos. During the training phase videos, labels and sign 
language descriptions of the observed classes ℂ𝑠  are 
incorporated. The objective at test phase is to classify the 
unobserved novel classes ℂ𝑢. 

The set of training samples, denoted by 𝑆𝑡𝑟 = {(𝑣𝑖 , 𝑐𝑖)}𝑖=1
𝑁  

contains 𝑁  instances. Here, 𝑣𝑖  represents the i-th training 
video, and 𝑐𝑖𝜖ℂ𝑠 is the corresponding sign language video. It 
is assumed that there is access to the textual descriptions, 
denoted by 𝜏(𝑐) for each class. The objective is to acquire a 
zero-shot classifier capable of assigning each test video to a 
class in ℂ𝑢 based on the textual descriptions provided. 

The aim is to establish zero-shot classifier model that 
employs label embedding. To achieve this, a compatibility 
function, denoted as 𝐹(𝑣, 𝑐) , is defined to measure the 
similarity between a given input video and class pair, 
generating a score that reflects the degree of confidence that 
video 𝑣  belongs to class 𝑐 . Based on the compatibility 
function 𝐹 , zero-shot classification function at test time 

𝑓: 𝕍 ⟶ ℂ𝑢  is defined as: 
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𝑓(𝑣) =arg max 𝐹(𝑣, 𝑐)                         (1) 
 𝑐 ∈ ℂ𝑢 

Using this method, the compatibility function can classify 
novel unobserved classes that are encountered during the 
testing phase. 

Short-term spatiotemporal representations were obtained 
with I3D [30] while longer-term dependencies were found 
with bi-LSTM [25]. The goal of using bi-LSTM [25] is to 
capture longer term dependencies as effectively as possible. 
Hand landmarks are extracted from streams using Mediapipe 
[26]. Text-based class embeddings for sign language 
descriptions are extracted using BERT [27], which is state-of-
the-art in this area. BERT is essentially an encoder stack. The 
advantage of BERT over word2vec [28] and glove [29] is that 
the extracted representation is more sensitive to other words 
in the sentence. The bi-linear compatibility function utilized 
establishes a relation between the video and representations of 
class as follows: 

𝐹(𝑣, 𝑐) = 𝜃(𝑣)𝑇𝑊𝜙(𝜏(𝑐))                     (2) 

𝜃(𝑣) represents the d-dimensional representation of video 

𝑣, while 𝜙(𝜏(𝑐)) is the m-dimensional BERT embedding of 

the textual descriptions, 𝜏(𝑐), for class 𝑐 . The compability 
matrix, denoted by 𝑊 and comprising 𝑑 ×𝑚 dimensions. For 
calculating this matrix, we use the formula given in [5]. 

IV. EXPERIMENTS 

Four experiments were conducted, these are (i) the 
baseline study that achieved the best results in [5], (ii) the 
study conducted with augmented data, (iii) the study 
conducted using average pooling layer on hand landmarks, 
and (iv) the study conducted using LSTM on hand landmarks. 

Firstly, hand streams were extracted from ASL-Text 
which contains signers’ body streams. Therefore, two streams 
were worked on: Body stream and hand stream. These videos 
were split into 8-frame small video segments. Then we 
extracted short-term spatiotemporal features and longer-term 
dependencies from these segments.  

 The applied augmentations can be seen in Figure 2. These 
are (i) changes in brightness and contrast, (ii) rotation between 
-30 and +30 degrees, (iii) horizontal flipping and (iv) mix of 
augmentations mentioned in (i), (ii), (iii). The dataset was 
increased five-fold in this way, spatiotemporal representations 
were obtained, and longer-term dependencies were captured. 

Results were obtained by extracting hand landmarks and 
feeding them to the average pooling layer or LSTM. 

V. RESULTS 

The results can be seen in Table 1, which includes our 
study conducted with augmented data and landmarks. In the 
baseline study, a success rate of 20.38 was achieved on the 
validation dataset, while for the top-1, top-2, and top-5 on the 
test dataset, success rates of 16.94, 27.31, and 47.91 were 
obtained, respectively. In the study conducted with augmented 
data, a success rate of 19.98 was achieved on the validation 
dataset, while for the top-1, top-2, and top-5 on the test dataset, 
success rates of 19.11, 30.89, and 50.91 were found, 
respectively. In the study conducted using hand landmarks 
with average pooling, a success rate of 20.4 was obtained on 
the validation dataset, while for the top-1, top-2, and top-5 on 
the test dataset, success rates of 18.7, 28.32, and 49.41 were 

achieved, respectively. In the study conducted using hand 
landmarks with LSTM, a success rate of 19.98 was found on 
the validation dataset, while for the top-1, top-2, and top-5 on 
the test dataset, success rates of 19.31, 28.76, and 48.21 were 
achieved, respectively. 

  
Original Changes in brightness and 

contrast (i) 

  
Rotation between -30 and +30 

degrees (ii) 
Horizontal Flipping (iii) 

Fig. 1. Applied augmentations 

Table 1 shows that the results obtained from the 
experiments are better than those obtained from the baseline 
study. 

Experiments Val (30 Classes) Test (50 classes) 

 Top-1 Top-1 Top-2 Top-5 

Baseline 20.38 16.94 27.31 47.91 

Augmented Data 19.98 19.11 30.89 50.91 

Landmarks 
(average pooling) 

20.4 18.7 28.32 49.41 

Landmarks 

(LSTM) 
19.98 19.31 28.76 48.21 

TABLE I.  EXPERIMENTAL RESULTS 

VI. CONCLUSION 

In this study, we aim to do sign language recognition with 
zero-shot learning method. We utilized techniques to increase 
the amount of data available for training and extracted hand 
landmarks by inputting them into deep learning layers like the 
mean layer and LSTM layer. Even with average pooling, 
using hand landmarks has led to an improvement in results. 
The best results are obtained from the study conducted using 
hand landmarks and LSTM. Better results can be obtained by 
generating more augmented data. 
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