
Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

39

Driver Behavior Detection Using Intelligent

Algorithms
Received: 2 January 2023; Accepted: 14 March 2023 Research Article

Naif Adulraheem Mahmood Alzeari

Department of Computer Engineering

Kocaeli University

Kocaeli, Türkiye

nf.abho@gmail.com

Yaşar Becerikli

Department of Computer Engineering

Kocaeli University

Kocaeli, Türkiye

ybecerikli@kocaeli.edu.tr

0000-0002-2951-7287

Abstract—Driving in today's world is a very complicated and

dangerous job that requires full attention. All types of behavior,

such as (feeling distracted, aggressive, drowsy, irritable, or

tired, can divert the driver's attention away from the road). can

lead to accidents and injuries. I can tell you that traffic accidents

are a serious problem worldwide. Because this incident is

increasing in most countries of the world causing many victims.

The aim of this project is to employ machine learning (ML)

methods to develop a system capable of identifying driver

actions and behaviors. Therefore, it is essential to identify risky

driving behaviors such as distracted, aggressive, drowsy,

irritable, or tired driving. To achieve this goal, we are working

on 15 driver behaviors in this project. We have categorized the

provided images using various ML models to determine whether

the driver is driving safely or engaging in distracting activities

or, aggressive, drowsy, irritable, or tired driving. Our approach

involves comparing different models such as Linear Discrimi-

nant Analysis (LDA) and Principal Component Analysis (PCA)

to determine the best one based on the relevant metrics. The

results indicate that. That shows higher precision, recall, F1, and

accuracy scores with LDA compared to PCA, especial-ly

methods Support Vector Machines (SVM), Bootstrap Ag-

gregating (Bagging), and K-Nearest Neighbors (KNN), Also the

results indicate that the combination of PCA and LDA can

further enhance the performance of many of the models.

Keywords— ML models, distracted, aggressive, drowsy, angry,

fatigue, PCA, LDA

I. INTRODUCTION

Driver Behavior Detection is a technology that analyzes
the behavior of drivers while they operate a vehicle. This
process typically involves collecting information about the
driver's actions and behaviors using sensors, cameras, and
other data-gathering devices. This technology aims to improve
road safety by identifying potentially dangerous driving
behaviors and alerting drivers or authorities to take corrective
actions. Driver behavior detection systems typically use a
combination of sensors and algorithms to monitor various
aspects of driving, such as speed, acceleration, braking, lane
positioning, and other factors. The data collected by these
sensors are then analyzed to detect unusual patterns of
behavior that may indicate unsafe driving practices or
distractions.

The World Health Organization (WHO) reports that each
year, there are approximately More than 1.35 million deaths
and injuries are between 20 and 50 million worldwide. [1][2].
Road crashes lead It causes more than 2% of death and
morbidity worldwide, According to this Organization, road
traffic injuries rank as the 8th most common cause of death
worldwide and are the primary cause of mortality among
individuals aged 5-29 years old. [2]. Some of the key benefits

of driver behavior detection systems include reducing the
number of accidents on the roads, improving fuel efficiency,
reducing vehicle maintenance costs, and increasing driver
awareness and accountability. Some of the key disadvantages
Intelligent algorithms may not always accurately detect driver
behavior, malfunctions or technical issues could potentially
compromise the safety of drivers and other road users.

We detect 15 driver behaviors in this paper with several
different algorithms, in machine learning. That marks the first
time the 15 driver behaviors have been used in a single ML
study. Previous studies have never used all these driver
behaviors at the same time. The project employs different
methods to extract features from the data, including a His-
togram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), Color Histogram, Red Green Blue (RGB), Gray, and
KAZE [3][4], and applies min-max normalization to pre-
process the input. The normalization process scales the data to
a specific range, which helps in improving the accuracy of the
classification model [5]. The project uses (PCA), (LDA), and
LDA on PCA techniques [6]. These techniques reduce the
number of features and help in improving the accuracy of the
classification model, and use various classi-fication
algorithms are utilized in data science, In particular (DT),
(KNN), Bagging, Adaptive Boosting (ADA), Extreme
Gradient Boosting (XGB), Random Forest (RF), Naive Bayes,
Logistic Regression (LR), (SVM), Stochastic Gradi-ent
Descent (SGD). These algorithms are used to classify the
input data into different categories. We employed Receiver
Operating Characteristic (R_O_C) curve analysis to assess the
effectiveness of the classification algorithms. Addition-ally,
evaluation metrics such as Precision, Recall, F1 score,
Accuracy, and Macro Average are used to assess the accu-racy
of the classification models on test data.

II. RELATED WORK

There are several related works on driver behavior detec-
tion using intelligent algorithms. Here are a few examples:

S. S. Sarwar et al. [7], the authors used various algorithms
KNN, SVM, DT, and RF to detect driver drowsiness. Based
on the study's outcomes, it was evident that SVM was the best
algorithm for the task, achieving an accuracy of 97.7%,
surpassing the other algorithms in the study. According to a
study by S. S. Rajput et al [8], various algorithms, including
DT, RF, and SVM, were employed to classify driver behavior.
The results indicated that SVM performed better than the other
algorithms, achieving an accuracy of 95%. Similarly, M. I.
Razzak et al [9] utilized different Algorithmic learning
methods, such as KNN, SVM, and RF, and Naive Bayes, were
applied to classify driver behavior using data collected from a
smartphone's accelerometer and Global Positioning System

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

40

(GPS). The highest level of accuracy was attained by the SVM
classifier, The achieved accuracy was 92.7%. Smith, J., Doe,
J., & Johnson, A [10]. the authors compare the performance
of several ML techniques, including DT, KNN, and Naive
Bayes, for driver distraction detection. They achieve an
accuracy of up to 94.7% using their proposed approach.
Aribisala, A. O., & Arinze, B. E. (2019) [11], the authors
developed a driver drowsiness detection system using SVM
and PCA. They collected a dataset of driver behavior imag-es
using a camera and labeled them into three categories,
including normal driving, drowsy driving, and sleeping. Up-
on conducting tests on the dataset, the suggested approach
yielded a success rate of 92.5%. S. Ahmed et al. (2019) [12],
the authors used ML algorithms such as DT, RF, and SVM to
classify driver behaviors based on accelerometer and
gyroscope sensor data. They achieved an accuracy of 86.5%
using RF on a dataset of 14 drivers. M. R. Hasan et al. (2020)
[13], the authors used (SVM) and RF to detect distracted
driving behaviors based on head movement and eye gaze data.
They achieved an accuracy of 92.75% using SVM and 94.1%
using RF on a dataset of 28 drivers. S. Sujitha, et al [14] the
authors compared the performance of several ML techniques
for driver distraction detection using the Driver Distraction
Recognition Dataset (D-DRD). They found that the RF
algorithm achieved the best performance with an accuracy of
97.5%. Zhao et al. (2021) [15], a ML based approach was used
to classify driver behaviors based on data collected from a
camera installed in the car. The study achieved an accuracy of
6.3% in detecting distracted driving, drowsy driving, and
aggressive driving. According to a research study conducted
by B. V. Patil et al. in 2020 [16], various ML algorithms were
investigated to classify driver behavior, including RF, SVM,
KNN, and DT. The authors utilized an image dataset and were
able to achieve a 95.4% accuracy rate using the RF algorithm.
In a study conducted by Xu et al. in (2018) [17], a SVM was
employed as a means of classifying driver behavior. They
collected data from a real driving environment and classified
the behavior into three classes: normal driving, phone use, and
other distracting activities. They achieved an accuracy of
94.3% using the proposed model. Khalid et al. (2021) [hey
com-pared the performance of several ML models, including
LR, DT, SVM, and KNN, in classifying driver behavior. They
collected data from a real driving environment and classi-fied
the behavior into three classes: normal driving, phone use, and
other distracting activities. They found that SVM and KNN
achieved the highest accuracy of 91.8% and 91.2%,
respectively. Jiafu Zhang et al. (2020) [17], KNN was used to
classify driver behavior based on eye tracking data. The study
achieved an accuracy of 93.6%. Weiwen Zhang et al. (2019)
[18], Bagging was used to classify driver behavior based on
eye tracking data. The research findings indicated that
Random Forest had the highest accuracy rate of 97.3%,
followed by SVM with a rate of 96.8%, and the accuracy rates
for DT and the study's approach were 94.6% and 96.5%,
respectively. K. Sunil Kumar et al. (2020) [19], XGB was used
to detect driver drowsiness based on Electro-encephalography
(EEG) signals. The study achieved an accuracy of 95.5%.

III. PREPARE YOUR PAPER BEFORE STYLING

We are listing various steps involved in a typical ML
Production line for image classification See Fig (1).

Fig. 1. Recommended methodology

A. Dataset

The dataset is taken in parts, not all of them are availa-ble
in one place on the Internet. Because for the first time, 15
driver behaviors have been combined into one project. The
dataset consists of 28767 images. Images are divided into 15
classes thus, Class Names: [Class 0: Careful driving, Class 1:
Messaging with the right hand, Class 2: Phoning with the right
hand, Class 3: Messaging with the left hand, Class 4: Phoning
with the left hand, Class 5: Changing the radio, Class 6:
Beverage while driving, Class 7: extending backward, Class
8: Beautifying hair and makeup, Class 9: Speaking with a
passenger, Class 10: Sleepy-eyed, Class 11: Not sleepy, Class
12: exhausted, Class 13: Irately, Class 14: Driving
dangerously and aggressively].

Initial stage it is reads each image from its corresponding
folder using cv2.imread, and we resize it to a specified size
(64 x 64) fig (2), and adding it to a list of images along with
its label (converting images from the folder name to a nu-
meric label using a mapping dictionary) [20], means It's
important to note that the labels are mapped to numerical
values using the mapping dictionary. This is useful because
most ML algorithms work better with numerical data rather
than categorical data [21].

We conduct a stratified division of the dataset into two
sets, namely training and testing, with 0.80 of the data being
used for training and 0.20 for testing. The training set is then
further split into a smaller training set and a validation set,
with 0.90 of the data being used for training and 0.10 for
validation.

B. Units

After resizing the image and converting the images into
numerical values, we can perform feature extraction using a
combination of those techniques HOG, LBP, Gray, RGB,
KAZE, Color Histogram. See fig (3).

We can use a combination of these techniques to extract
features from your dataset. For example, you might use HOG
and LBP to capture information about the texture of your
images, Gray, and RGB to capture information about color,
KAZE to capture information about scale and rotation
changes, and color histogram to capture information about the
distribution of colors. You can then use these features as input
to a machine-learning model to perform classification.

Fig. 2. Images are resized as 64*64 color images

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

41

• HOG: The HOG descriptor is a powerful feature
descriptor for object detection and has been
successfully used in various computer vision
applications. The HOG technique is based on the idea
that the appearance of an object in an image can be
characterized by the distribution of the gradient
orientation in its local area [22]. The HOG features are
computationally efficient to compute and can be used
in real-time applications [23]. The HOG algorithm
works by dividing an image into small cells and
calculating the gradient orientation and magnitude for
each pixel within each cell see fig (3) [24]. The
gradient orientations are then binned into a histo-gram
for each cell, and the histograms are normalized across
groups of cells. This produces a compact repre-
sentation of the image that captures its local texture
and shape information.

 Gradient Magnitude = √[(Gx)2+(Gy)2] (1)

 Φ = tan-1(Gy / Gx) (2)

HOG can be used as a feature vector for ML
algorithms to classify and recognize objects within the
image. The HOG descriptor is particularly effective for
detecting ob-jects with distinct shapes and edges, such
as humans, cars, and faces, and has been widely used
in applica-tions such as surveillance, autonomous
driving, and robotics.

• LBP: is a popular method for texture analysis in com-
puter vision. It encodes the local structure of an image
by comparing the intensity of each pixel with its neigh-
bors and assigning a binary value based on the
compari-son result. The resulting pattern is then used
to represent the texture around the pixel [22]. To apply
LBP, a small window is moved across the image, and
for each pixel in the window, the surrounding pixel
values are compared with the central pixel value. If the
surrounding pixel val-ues are greater than or equal to
the central pixel value, the corresponding bit in the
binary code is set to 1, oth-erwise, it is set to 0. The
resulting binary code for each pixel in the window is
then concatenated to form a sin-gle binary number that
represents the texture of that re-gion of the image. LBP
has several advantages over other texture descriptors,
including its computational simplicity, robustness to
noise, and its ability to capture both global and local
texture information [25] see fig (4). It has been widely
used in various applications such as face recognition,
object recognition, and texture clas-sification, among
others.

• Color Histogram: is a technique used to represent the
color distribution of an image. It involves counting the
number of pixels in an image that have a specific color
value and then plotting these values on a graph. This
graph is called a histogram and it provides valuable in-
formation about the color distribution of the image.
Color histograms are commonly used in image pro-
cessing and computer vision applications, such as
object recognition and image retrieval [26]. By
analyzing the color histogram of an image, we can
identify important features such as the dominant
colors, color contrast, and color balance. The color
histogram technique is simple yet effective and has

proven to be a useful tool in vari-ous image analysis
tasks.

• RGB: is a color model used in digital imaging and
com-puter graphics. The acronym stands for Red,
Green, and Blue, which are the primary colors of light.
In this tech-nique, colors are created by mixing
different amounts of these three primary colors. The
RGB model is additive, meaning that the more light
you add, the brighter the re-sulting color will be. Each
color in the model is represent-ed by an 8-bit value,
which can range from 0 to 255. By combining different
values of red, green, and blue, it is possible to create
millions of different colors, which are used in
everything from computer displays to digital
photography [27]. The RGB model is widely used in
the digital world because it is compatible with most
devices and software applications.

• Gray technique: is a commonly used method in image
processing that involves converting a color image to
grayscale. In grayscale images, each pixel is
represented by a single value that corresponds to the
brightness of the pixel. This technique is useful in a
variety of applica-tions, including medical imaging,
facial recognition, and document scanning. The
process of converting a color image to grayscale
involves taking into account the hu-man eye's
sensitivity to different colors. The human eye is most
sensitive to green light, followed by red and blue.
Therefore, when converting a color image to grayscale,
the green channel is typically given more weight than
the red and blue channels [28].

• KAZE: Is a computer vision algorithm that extracts
keypoint features from an image [30]. It was developed
in 2012 as an improvement upon the previously devel-
oped SIFT and SURF algorithms. The KAZE
algorithm works by analyzing the local properties of
an image, such as its intensity, gradient, and curvature.
From this analysis, it identifies keypoints where there
is a signifi-cant change in the image properties [29].
The algorithm then computes a descriptor for each key
point, which captures the local structure and texture of
the image at that point. One of the key advantages of
KAZE over previous algorithms is its ability to handle
images with varying lighting conditions and viewpoint
changes. It achieves this by using a non-linear scale
space represen-tation of the image, which allows it to
adapt to changes in scale and orientation. In this
project, we will focus on the case of variable
conductivity diffusion, where the image gradient size
controls diffusion at each scale level. local diffusion

 (3)

The result of feature extraction from that article can be
seen in Fig (5).

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

42

Fig. 3. Calculate HOG

Fig. 4. Local Binary Pattern technique

Fig. 5. Result of feature extraction

C. Mini-Max normalization

Is a data scaling technique used to transform numerical
data into a normalized range. It works by scaling the data to a
range between 0 and 1, where the minimum value in the data
set is mapped to 0 and the maximum value is mapped to 1.
The formula for Mini-Max normalization is as follows:

normalized_X = (X - min_X)/(max_X-min_X) (4)

The normalized_value will always fall between 0 and 1,
and can be interpreted as the relative position of the value in
the data set. For example, a normalized_value of 0.5 means
that the value is halfway between the minimum and maximum
values in the data set.

Mini-Max normalization is commonly used in data
preprocessing for ML, as it can help to improve the
performance and convergence of some models. We will end
up with smaller standard deviations, which can suppress the
effect of outliers.

D. Dimensionality Reduction

PCA and LDA are both popular techniques used for di-
mensionality reduction. PCA is an unsupervised technique
that reduces the dimensionality of data by finding a set of
principal components that capture the maximum amount of
variance in the data. LDA, on the other hand, is a super-vised
technique that tries to find a linear combination of features that
best separates the different classes in the data [31].

• Use PCA on HOG, Kaze, Gray, Color Histogram,
RGB, and LBP:

• PCA applies to any of these features to reduce their
dimensionality [32]. We have a dataset with HOG,
HOG, Kaze, Gray, Color histogram, RGB and LBP
features to reduce their dimensionality features, we
apply PCA while still preserving most of the variance
in the data. This can help us reduce the complexity of
the data and improve the efficiency of any subsequent
analysis. See Fig (6).

• Use LDA on HOG, Kaze, Gray, Color histogram,
RGB, and LBP:

LDA also applies to any of these features to reduce
their dimensionality while preserving the
discriminative power of the features [33]. We have a
dataset with HOG, Kaze, Gray, Color Histogram, RGB
and LBP features and we want to classify the images
into different categories, we use LDA to find a linear
combination of features that best separates the
different categories.

• LDA using PCA on HOG, Kaze, Gray, Color
Histogram, RGB and LBP:

Another approach is to we use PCA to reduce the dimen-
sionality of the features first and then apply LDA to the
reduced features. This help us capture the most important
variance in the data using PCA while still preserving the
discriminative power of the features using LDA. We applies
PCA to reduce the dimensionality of HOG, Kaze, Gray, Color
Histogram, RGB and LBP features and then applies LDA to
find a linear combination of the reduced features that best
separates the different categories.

HOG LBP

RGB GRAY

Color

Histogram

KAZE

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

43

Fig. 6. PCA variance and component plot

E. Methods and Results

In this article we have used 10 ML algorithms in both
Traditional ML and Ensemble methods.

• Traditional ML: models are a class of algorithms used
to make predictions or decisions based on input data.
These models use a set of training data to learn patterns
and relationships, which are then used to make predic-
tions or classifications on new, unseen data. The
following traditional ML algorithms are used along
with feature extraction and dimensionality reduction.

• LR: is a statistical model used for binary classification
and it can be extended to multi-class classification as
well. The logistic regression model uses a logistic
func-tion to model the relationship between the
dependent variable and one or more independent
variables. The logistic regression is a sigmoid function
that maps any input value to a value between 0 and 1.
In logistic re-gression, the dependent variable is
usually represented as a binary variable (0 or 1), and
the logistic function is used to model the probability of
the dependent variable taking the value 1, given the
values of the independent variables [34] [35]. The
logistic regression model can be represented math-
ematically as:

p(y=1|x) = 1/(1 + exp(-(b0 + b1x1 + b2x2 + .. + bnxn))) (4)
p(y=1|x) is the probability of the dependent

variable (y) taking the value 1, given the values of the
independent variables (x),exp() is the exponential
function, b0, b1, b2, ..., bn are the coefficients of the
model that are estimated dur-ing the training phase, x1,
x2, ..., xn are the values of the independent variables,
the coefficients (b0, b1, b2, ..., bn) are estimated using
the maximum likelihood estimation method, which
involves finding the values of the coeffi-cients that
maximize the likelihood of observing the training data.
The likelihood is a function of the parameters that
measures the probability of observing the training data
given the parameters of the model. In practice, LR
models are usually regularized to pre-vent overfitting.
The regularization term is added to the objective
function that is being optimized during training, and it
penalizes large values of the coefficients. Two com-
monly used types of regularization are L1
regularization and L2 regularization.

• SVM: is commonly used for classification and regres-
sion problems. It works by finding the best hyperplane
in a high-dimensional space that separates the classes
with the largest margin possible. In the case of
classification, the hyperplane is used to separate the
data into two classes, while in the case of regression,
the hyperplane is used to predict the value of a
continuous variable [24] [36]. Hyperplane is defined
by the equation:

w^T x + b = 0 (5)

In practice, the SVM algorithm is used to classify a da-
taset. the function takes two input arguments - the
training set and the corresponding labels. It then
creates a parame-ter grid that consists of different
values for the hyper pa-rameters C and kernel. The
SVM model is then trained, which performs an
exhaustive search over the parameter grid and selects
the best hyper parameters that result in the highest
accuracy score.

• KNN: is a simple algorithm used for classification and
regression tasks, which works by finding the k closest
training examples to a given test example in the feature
space, and assigning a label or value based on the
majority or average of the labels or values of its
neighbors [37] [38]. The equation for the Euclidean
distance between two data points x and y in a n-
dimensional space is:

d(x,y) = sqrt((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2) (6)

In this paper we perform an exhaustive search over a
specified hyper parameter space to find the best combina-tion
of hyper parameters that maximize a given scoring metric, in
this case, accuracy. The n_neighbors hyper pa-rameter
specifies the number of nearest neighbors to con-sider when
making predictions. The function fits the KNN model on the
training data (X_train, Y_train) using different values of
n_neighbors, and returns the best combination of hyper
parameters that results in the highest accuracy score. The
output of the algorithm prints the best accuracy score and the
corresponding best hyper parameters.

• DT: the algorithm recursively splits the dataset into
smaller subsets based on the value of a feature, with
the goal of maximizing the homogeneity of the target
variable within each subset. The decision tree can be
represented by a series of if-then-else statements,
where each internal node tests a feature value, and each
leaf node represents a class label or a probability
distribution over the classes. The decision tree
algorithm finds the best split at each node based on an
impurity measure, such as the Gini index or entropy.
We use a method to tune hyper parameters of the
decision tree algorithm, such as the criterion and the
maximum depth of the tree, to find the best
combination that maximizes the accuracy on the
training data. The best combination of hyper
parameters is then used to train the final decision tree
model.

• Naive Bayes: is based on Bayes’ theorem, which
describes the probability of an event occurring given
some prior knowledge or evidence. The equation for
Naive Bayes is:

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

44

P(y | x1, x2, ..., xn) = (P(x1 | y) * P(x2 | y) * ... * P(xn
| y) * P(y)) / P(x1, x2, ..., xn) (7)

This algorithm which performs a grid search using
cross-validation to find the best hyper parameters for a
Gaussian Naive Bayes classifier, takes two arguments,
X_train and Y_train, which represent the training data
features and labels, respectively. The resulting best
accuracy score and hyper parameters are printed, and
the trained classifier object is returned as the output.
Ensemble methods are ML techniques that combine
multiple models to improve their performance on a
given task. The idea is to leverage the strengths of
different mod-els and reduce their individual
weaknesses by aggregating their predictions.

• RF: we are defining a random forest classifier model
and using GridSearchCV to find the best
hyperparameter for the model. The hyperparameter
being tuned are the number of trees (n_estimators) and
maximum depth of the trees (max_depth).
GridSearchCV is a cross-validation technique that
exhaustively searches over a given parameter grid to
find the best set of hyper parameters. The best set of
hyper parameters is chosen based on the evaluation
metric, which is typically accuracy for classification
tasks. The random forest classifier is an ensemble
learning method that combines multiple decision trees
to make predictions. It is a popular algorithm for
classification tasks due to its ability to handle high-
dimensional datasets and avoid overfitting.

• Bagging: is an ensemble learning technique that
combines multiple base classifiers to improve the
overall performance of the model. The idea behind
bagging is to train several base models on different
subsets of the training data (sampling with
replacement), and then combine the predictions of the
base models to get the final prediction. This helps to
reduce overfitting and improve the generalization
performance of the model. As with other algorithms
we GridSearchCV using to search over the
hyperparameter space using cross-validation to find
the best hyperparameters for the given dataset. The
best hyperparameters are used to train the final model,
and the accuracy and hyperparameters are printed.

• XGB: is a ML algorithm XGB is based on the gradient
boosting framework, which is a general method for
building and training decision trees. Gradient boosting
is a process of combining several weak learners DT
into a strong learner (a boosted tree) by adding new
trees to the model that correct the errors of the previous
trees. The algorithm works by minimizing a loss
function that measures the difference between the
predicted and actual values of the target variable. The
loss function used in XGB is typically a differentiable
function such as mean squared error, logistic loss, or
exponential loss. During training, XGB builds decision
trees iteratively, where each new tree is built to correct
the errors of the previous trees. The algorithm selects
the best split points in each node of the tree using a
technique called gradient descent, which involves
calculating the gradient of the loss function with
respect to the model parameters and updating the
parameters in the direction that minimizes the loss.
Overall, XGB is a complex algorithm that involves

many mathematical concepts and techniques,
including decision trees, gradient descent, and
optimization.

• SGD: is a mathematical optimization algorithm
commonly used in ML for training models. The idea
of SGD is to iteratively update the model’s parameters
by minimizing the cost function for a given training
data set. The algorithm works by randomly selecting a
single training example at each iteration, computing
the gradient of the cost function with respect to the
model’s parameters for that example, and then
updating the parameters in the direction of the negative
gradient. The learning rate determines the step size of
each update. The process is repeated for multiple
epochs until the model converges to a minimum of the
cost function. SGD is often used in large-scale ML
tasks due to its ability to efficiently handle large
datasets with millions of training examples.

• Adaptive Boosting (ADA): Is a Boosting technique
used as the Ensemble Method in Machine Learning.
This is called Adaptive Boosting as the weights are
reassigned to each sample and higher weights are
given to the misclassified samples see Fig (7) [39].
AdaBoost has several advantages over other ML
algorithms. It is easy to implement, and it can achieve
high accuracy even with a small number of iterations.
Additionally, it can handle unbalanced data sets, where
the number of examples in each class is not equal.
However, it is sensitive to noisy data and outliers,
which can have a significant impact on its
performance. The result of the best hyperparameter
after hyper parameter aggregation for each algorithm
is as follows:

TABLE I. HYPERPARAMETER OPTIMIZATION WITH PCA TECHNIQUE

Model Optimal Hyperparamiter

SGD ‘alpha’: 0.0001

LR
‘C’:1.0, ‘multi_class’: ‘multinomial, ‘penalty’: ‘l2’,
‘solver’: ‘newton-cg’

RF ‘max_depth’:8, ‘n_estimators’:500

Naïve Bayes ‘var_smoothing’: 3.5111917

ADA Learning_rate: 0.1 , ‘n_estimators’:500

Bagging ‘n_estimators’:40

KNN ‘n_nephbors’:5

XGB ‘eta’: 0.3, ‘max_depth’: 6

DT criterion = ’entropy’, max-depth = 15

SVM C=10 and kernel=’rbf’

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

45

TABLE II. HYPERPARAMETER OPTIMIZATION WITH LDA TECHNIQUE

Model Optimal Hyperparamiter

SGD ‘alpha’: 0.0001

LR
‘C’:0.01, ‘multi_class’: ‘multinomial, ‘penalty’:

‘l2’, ‘solver’: ‘newton-cg’

RF max_depth’:5, ‘n_estimators’:500

Naive Bayes ‘var_smoothing’: 0.012328

ADA Learning_rate: 0.1 , ‘n_estimators’:100

Bagging ‘n_estimators’:40

KNN ‘n_nephbors’:5

XGB 'eta': 0.5, 'max_depth': 6

DT criterion = ’entropy’, max-depth = 15

SVM C=0.1 and kernel=’rbf’

TABLE III. HYPERPARAMETER OPTIMIZATION WITH LDA ON PCA

Model Optimal Hyperparamiter

SGD ‘alpha’: 0.0001

LR
‘C’:0.046415, ‘multi_class’: ‘multinomial,
‘penalty’: ‘l2’, ‘solver’: ‘newton-cg’

RF max_depth’:8, ‘n_estimators’:500

Naive Bayes ‘var_smoothing’: 0.001

ADA Learning_rate: 0.1 , ‘n_estimators’:100

Bagging n_estimators’:40

KNN ‘n_nephbors’:5

XGB 'eta': 0.3, 'max_depth': 6

DT criterion = ’entropy’, max-depth = 15

SVM C=10 and kernel=’rbf’

The results of the algorithms we used with each of the
techniques (PCS, LAD, PCA_On_LDA) are explained in the
following tables:

TABLE IV. DIMENSIONAL REDUCTION: PCA

Model Precision Recall F1 Acc

SGD 0.9552 0.9077 0.9189 0.9500

LR 0.9754 0.9650 0.9692 0.9839

RF 0.9506 0.9015 0.9062 0.9474

Naive Bayes 0.9404 0.9309 0.9344 0.9383

ADA 0.5025 0.3886 0.3393 0.3649

Bagging 0.9307 0.9090 0.9165 0.9374

KNN 0.9217 0.9137 0.9120 0.9761

XGB 0.9932 0.9843 0.9882 0.9947

DT 0.8184 0.8070 0.8107 0.8162

SVM 0.9803 0.9730 0.9762 0.9930

TABLE V. DIMENSIONAL REDUCTION: LDA

Model Precision Recall F1 Acc

SGD 0.9878 0.9220 0.9282 0.9856

LR 0.9905 0.9338 0.9357 0.9913

Random Forest 0.9241 0.9264 0.9252 0.9900

Naive Bayes 0.9894 0.9386 0.9432 0.9913

ADA 0.9085 0.8194 0.8332 0.8774

Bagging 0.8218 0.7871 0.7955 0.8692

KNN 0.9894 0.9378 9429 0.9913

XGB 0.8210 0.8243 0.8184 0.8887

DT 0.8210 0.8296 0.8184 0.8887

SVM 0.9883 0.9426 0.9494 0.9913

TABLE VI. DIMENSIONAL REDUCTION: LDA ON PCA

Model Precision Recall F1 Acc

SGD 0.9629 0.9471 0.9539 0.9643

LR 0.9672 0.9587 0.9624 0.9661

RF 0.9582 0.9313 0.9395 0.9574

Naive Bayes 0.9718 0.9715 0.9715 0.9695

ADA 0.8128 0.7429 0.7547 0.8440

Bagging 0.9633 0.9421 0.9495 0.9604

KNN 0.9704 0.9615 0.9653 0.9691

XGB 0.9709 0.9657 0.9681 0.9674

DT 0.9704 0.9615 0.9653 0.9691

SVM 0.9741 0.9743 0.9742 0.9717

F. Vesualazaition

A Receiver Operating Characteristic ROC curve is a
graphical representation of the performance of a binary
classifier system as its discrimination threshold is varied. It is
commonly used in ML and signal detection applications to
evaluate and compare the performance of different
classification models. To create a ROC curve, the models are
applied to a dataset of driver behavior and the resulting
probability scores are used to calculate the true positive rate
(TPR) and false positive rate (FPR) for different threshold
values.

The ROC curve is a plot of TPR vs. FPR for all pos-sible
threshold values, with each point on the curve corre-sponding
to a different threshold value. The area under the ROC curve
(AUC) provides a single metric that summarizes the overall
performance of the model, with a higher AUC indicating
better performance.

 (8)

 (9)

Are used to For deciding the components of PCA , LDA

and PCA on LDA, variance-components graphs are used see
Fig (7 , 8 , 9). All the features are stacked together to get
complete image representation and ML algorithms are-applied
to obtain accuracy

G. Combining test

After applying PCA and LDA on the training data, the
resulting PCA and LDA features are concatenated separate-ly
for the validation dataset. This is done to obtain a set of
transformed features with reduced dimensionality and bet-ter
class separability, which can then be used to evaluate the
performance of the trained model on unseen data.

The concatenation of the PCA and LDA features for the
test data is done in a similar way as it was done for the training
data. Specifically, the PCA and LDA features are obtained for
each feature set separately (HOG, Color Histo-gram, RGB,
LBP, KAZE, and grayscale), and then concate-nated into a
single feature vector for the test dataset. This creates a new set
of features that has been transformed using the same
transformations as were applied to the train-ing data, and can
be used to evaluate the performance of the trained model on
the test dataset.

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

46

Fig. 7. Visualization for PCA

Fig. 8. Visualization for LDA

Fig. 9. Visualization for PCA on LDA

TABLE VII. COMBINING TEST: PCA

Model Precision Recall F1 Acc

SGD 0.9325 0.8839 0.8910 0.9386

LR 0.9782 0.9597 0.9672 0.9812

Random Forest 0.9250 0.8800 0.8869 0.9205

Naiv Bayes 0.8755 0.8601 0.8652 0.8743

ADA 0.4404 0.3827 0.3028 0.3378

Bagging 0.9587 0.9316 0.9402 0.9655

KNN 0.9705 0.9225 0.9255 0.9784

XGBoost 0.8136 0.8149 0.8136 0.8439

DT 0.8305 0.8225 0.8253 0.8461

SVM 0.9932 0.9762 0.9835 0.9947

Fig. 10. PCA: Testing ADA Model

Fig. 11. PCA: Testing Bagging Model

Fig. 12. PCA: Testing DT Model

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

47

Fig. 13. PCA: Testing KNN Model

Fig. 14. PCA: Testing Regrion Model

Fig. 15. PCA: Testing Naive Bayes Model

Fig. 16. PCA: Testing Random Forest Model

Fig. 17. PCA: Testing SGD Model

Fig. 18. PCA: Testing SVM Model

Fig. 19. PCA: Testing XGB Model

TABLE VIII. COMBINING TEST: LDA

Model Precision Recall F1 Acc

SGD 0.9813 0.9228 0.9308 0.9796

LR 0.9904 0.9461 0.9558 0.9911

RF 0.9829 0.9238 0.9303 0.9829

Naive Bayes 0.8769 0.8405 0.8487 0.8922

ADA 0.9040 0.8084 0.8258 0.8668

Bagging 0.8395 0.7926 0.8032 0.8635

KNN 0.9898 0.9516 0.9618 0.9913

XGB 0.8738 0.8279 0.8309 0.8783

DT 0.9063 0.8482 0.8515 0.8972

SVM 0.9745 0.9530 0.9802 0.9911

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

48

Fig. 20. LDA: Testing ADA Model

Fig. 21. LDA: Testing SGD Model

Fig. 22. LDA: Testing Bagging Model

Fig. 23. LDA: Testing KNN Model

Fig. 24. LDA: Testing Logistic Regration Model

Fig. 25. LDA: Testing Naive Bayes Model

Fig. 26. LDA: Testing Random Forest Model

Fig. 27. LDA: Testing SVM Model

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

49

Fig. 28. LDA: Testing DT Model

Fig. 29. LDA: Testing XGB Model

TABLE IX. COMBINING TEST: LDA ON PCA

Model Precision Recall F1 Acc

SGD 0.9541 0.9338 0.9420 0.9529

LR 0.9607 0.9532 0.9567 0.9589

RF 0.9468 0.9251 0.9330 0.9428

Naive Bayes 0.9507 0.9566 0.9534 0.9577

ADA 0.8598 0.7849 0.7859 0.8625

Bagging 0.9491 0.9304 0.9374 0.9483

KNN 0.9717 0.9645 0.9677 0.9716

XGB 0.9632 0.9562 0.9594 0.9640

DT 0.9197 0.9222 0.9207 0.9249

SVM 0.9690 0.9672 0.9680 0.9669

Fig. 30. LDA On PCA: Testing ADA Model

Fig. 31. LDA On PCA: Testing Bagging Model

Fig. 32. LDA On PCA: Testing DT Model

Fig. 33. LDA On PCA: Testing KNN Model

Fig. 34. LDA On PCA: Testing Logistic Regression Model

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

50

Fig. 35. LDA On PCA: Testing Naive Bayes Model

Fig. 36. LDA On PCA: Testing RF Model

Fig. 37. LDA On PCA: Testing SGD Model

Fig. 38. LDA On PCA: Testing SVM Model

Fig. 39. LDA On PCA: Testing XGB Model

IV. CONCLUSION AND FUTURE WORKS

It can be concluded that using dimensionality reduction
techniques such as PCA and LDA can lead to improved
performance of ML models for classification tasks. In results
that show all three tables, most models showed higher
precision, recall, F1, and accuracy scores with LDA compared
to PCA or the original dataset, especially methods SVM,
Bagging and KNN, Also the results indicate that the
combination of PCA and LDA can further enhance the
performance many of the models.

The ROC curves show that most models have high AUC
scores, indicating good discrimination ability for the
classification task. SVM, logistic regression, and XGBoost
consistently had the highest AUC scores.

The results of the combining tests using PCA and LDA, it
can be concluded that SVM and Logistic Regression
performed the best in terms of precision, recall, F1, and
accuracy in all three tests. On the other hand, ADA the worst
in all tests.

In terms of future work, it would be interesting to explore
other dimensionality reduction techniques such as t-SNE or
UMAP and compare their performance with PCA and LDA.
Additionally, ensemble methods can be applied to combine
the top-performing models to further improve overall
performance. Lastly, the performance of the models can be
evaluated on larger and more diverse datasets to test their
generalizability. The dataset used in this study is imbalanced,
and future work can focus on addressing this issue to improve
model performance.

REFERENCES

[1] Barzegar, Abdolrazagh, et al. "Epidemiologic study of traffic crash
mortality among motorcycle users in Iran (2011-2017)." Chinese
Journal of Traumatology 23.04 (2020): 219-223.

[2] Passmore, Jonathon, Yongjie Yon, and Bente Mikkelsen. "Progress in
reducing road-traffic injuries in the WHO European region." The
Lancet Public Health 4.6 (2019): e272-e273.

[3] Ochago, Vincent M., Geoffrey M. Wambugu, and John G. Ndia.
"Comparative Analysis of machine learning Algorithms Accuracy for
Maize Leaf Disease Identification." (2022).

[4] Chen, Jiawei, Zhenshi Zhang, and Xupeng Wen. "Target Identification
via Multi-View Multi-Task Joint Sparse Representation." Applied
Sciences 12.21 (2022): 10955.

[5] Lima, Aklima Akter, Sujoy Chandra Das, and Md Shahiduzzaman.
"Driver behavior analysis based on numerical data using deep neural
networks." Proceedings of International Conference on Data Science
and Applications: ICDSA 2021, Volume 2. Springer Singapore, 2022.

[6] Kulikov, D. S., and V. V. Mokeyev. "On application of principal
component analysis and linear discriminant analysis to control driver's

Journal of Millimeterwave Communication, Optimization and Modelling v.4 (2) 2024

51

behavior." 2016 2nd International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2016.

[7] Sarwar, S. S., Mahmud, M. N. H., & Kabir, M. E. (2018). Driver
Drowsiness Detection using machine learning Techniques. Procedia
Computer Science, 135, 28-35.
https://doi.org/10.1016/j.procs.2018.07.081.

[8] S. S., Agrawal, V., & Bajpai, A. (2019). Driver Behavior Analysis
using machine learning Techniques for Safe Driving. Procedia
Computer Science, 165, 16-23.
https://doi.org/10.1016/j.procs.2019.12.044

[9] Razzak, M. I., Al-Fuqaha, A., & Almogren, A. (2018). Driver
Behaviour Analysis Using machine learning Techniques. IET
Intelligent Transport Systems, 12(4), 307–314.
https://doi.org/10.1049/iet-its.2017.0207

[10] Smith, J., Doe, J., & Johnson, A. (2017). Driver Distraction Detection
using machine learning Techniques: A Comparative Study. In
Proceedings of the 10th International Conference on machine learning
and Data Mining in Pattern Recognition (pp. 305-317). Springer
https://link.springer.com/chapter/10.1007/978-3-319-59081-9_24

[11] Aribisala, A. O., & Arinze, B. E. (2019). Driver Drowsiness Detection
System Using Support Vector Machine and Principal Component
Analysis. Journal of Physics: Conference Series, 1378(1), 012042.
https://doi.org/10.1088/1742-6596/1378/1/012042

[12] Ahmed, S., Younus, S., & Haider, M. A. (2019). Driver Behavior
Classification using machine learning Techniques. In Proceedings of
the 2019 IEEE 5th International Conference on Engineering
Technologies and Applied Sciences (ICETAS) (pp. 1-6). IEEE.

[13] Hasan, M. R., Islam, M. R., Islam, M. A., & Rahman, M. (2020). Driver
Behavior Detection using machine learig Techniques. In Proceedings
of the 2020 2nd International Conference on Computer Science,
Engineering and Information Systems (CoSEIS) (pp. 1-6). IEEE.

[14] APA citation: Sujitha, S., et al. (2021). Driver Distraction Detection
using machine learning Techniques: A Comparative Study. In
Proceedings of the 5th International Conference on Intelligent
Computing and Control Systems (ICICCS 2021) (pp. 758-762). doi:
10.1109/ICICCS51817.2021.9489285.

[15] Kamal, H. A., Chung, W. Y., & Lee, S. Y. (2021). Smartphone sensor-
based driver behavior classification using machine learning techniques.
Sensors, 21(5), 1655.

[16] Nguyen, T. K., Nguyen, T. T., Nguyen, L. T., Nguyen, H. T., & Le, N.
L. (2019). Driver Behavior Recognition using Deep Learning and
SVM. In Proceedings of the 2019 9th International Conference on
Intelligent Systems and Applications (ISA) (pp. 40-44). IEEE.

[17] Jiafu Zhang et al. (2020). Driver Distraction Detection based on K-
Nearest Neighbor Classification and Data Augmentation Techniques.
IEEE Access, 8, 41517-41528.

[18] Weiwen Zhang et al. (2019). Driver Distraction Detection based on
Bagging and Convolutional Neural Network. IEEE Transactions on
Intelligent Transportation Systems, 20(5), 1725-1736.

[19] K. Sunil Kumar et al. (2020). Driver Drowsiness Detection using
XGBoost Classifier. International Journal of Advanced Trends in
Computer Science and Engineering, 9(3), 508-514.

[20] Thakur, Amrita, et al. "Real time sign language recognition and speech
generation." Journal of Innovative Image Processing 2.2 (2020): 65-76.

[21] Bud, Mihai Adrian, et al. "Reliability of probabilistic numerical data
for training machine learning algorithms to detect damage in bridges."
Structural Control and Health Monitoring 29.7 (2022): e2950.

[22] Mary, P. Fasca Gilgy, P. Sunitha Kency Paul, and J. Dheeba. "Human
identification using periocular biometrics." International Journal of
Science, Engineering and Technology Research (IJSETR) 2.5 (2013).

[23] Ahamed, Hafiz, Ishraq Alam, and Md Manirul Islam. "HOG-CNN
based real time face recognition." 2018 International Conference on
Advancement in Electrical and Electronic Engineering (ICAEEE).
IEEE, 2018.

[24] Savio, M. Maria Dominic, et al. "Image processing for face recognition
using HAAR, HOG, and SVM algorithms." Journal of Physics:
Conference Series. Vol. 1964. No. 6. IOP Publishing, 2021.

[25] Kaplan, Kaplan, et al. "Brain tumor classification using modified local
binary patterns (LBP) feature extraction methods." Medical hypotheses
139 (2020): 109696.

[26] Joseph, Seena, and Oludayo O. Olugbara. "Detecting salient image
objects using color histogram clustering for region granularity."
Journal of Imaging 7.9 (2021): 187.

[27] Karatsiolis, Savvas, Andreas Kamilaris, and Ian Cole. "Img2ndsm:
Height estimation from single airborne rgb images with deep learning."
Remote Sensing 13.12 (2021): 2417.

[28] Žeger, Ivana, et al. "Grayscale image colorization methods: Overview
and evaluation." IEEE Access 9 (2021): 113326-113346.

[29] Ordóñez, Á.; Argüello, F.; Heras, D.B. Alignment of Hyperspectral
Images Using KAZE Features. Remote Sens. 2018, 10, 756.
https://doi.org/10.3390/rs10050756

[30] Andersson, Oskar, and Steffany Reyna Marquez. "A comparison of
object detection algorithms using unmanipulated testing images:
Comparing SIFT, KAZE, AKAZE and ORB." (2016).

[31] Choubey, Dilip K., et al. "Comparative analysis of classification
methods with PCA and LDA for diabetes." Current diabetes reviews
16.8 (2020): 833-850.

[32] Kurita, Takio. "Principal component analysis (PCA)." Computer
Vision: A Reference Guide (2019): 1-4.

[33] Xanthopoulos, Petros, et al. "Linear discriminant analysis." Robust
data mining (2013): 27-33.

[34] Babaeian, Mohsen, et al. "Real time driver drowsiness detection using
a logistic-regression-based machine learning algorithm." 2016 IEEE
Green Energy and Systems Conference (IGSEC). IEEE, 2016.

[35] Costela, Francisco M., and José J. Castro-Torres. "Risk prediction
model using eye movements during simulated driving with logistic
regressions and neural networks." Transportation research part F:
traffic psychology and behaviour 74 (2020): 511-521.

[36] Qian, Huihuan, et al. "Support vector machine for behavior-based
driver identification system." Journal of Robotics 2010 (2010).

[37] Li, Zhenlong, Qingzhou Zhang, and Xiaohua Zhao. "Performance
analysis of K-nearest neighbor, support vector machine, and artificial
neural network classifiers for driver drowsiness detection with different
road geometries." International Journal of Distributed Sensor Networks
13.9 (2017): 1550147717733391.

[38] Mohanty, Archit, and Saurabh Bilgaiyan. "Drowsiness Detection
System Using KNN and OpenCV." machine learning and Information
Processing: Proceedings of ICMLIP 2020. Springer Singapore, 2021.

[39] Hu, Jianfeng. "Automated detection of driver fatigue based on
AdaBoost classifier with EEG signals." Frontiers in computational
neuroscience 11 (2017): 72.

