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Abstract—Driving in today's world is a very complicated and 

dangerous job that requires full attention. All types of behavior, 

such as (feeling distracted, aggressive, drowsy, irritable, or 

tired, can divert the driver's attention away from the road). can 

lead to accidents and injuries. I can tell you that traffic accidents 

are a serious problem worldwide. Because this incident is 

increasing in most countries of the world causing many victims. 

The aim of this project is to employ machine learning (ML) 

methods to develop a system capable of identifying driver 

actions and behaviors. Therefore, it is essential to identify risky 

driving behaviors such as distracted, aggressive, drowsy, 

irritable, or tired driving. To achieve this goal, we are working 

on 15 driver behaviors in this project. We have categorized the 

provided images using various ML models to determine whether 

the driver is driving safely or engaging in distracting activities 

or, aggressive, drowsy, irritable, or tired driving. Our approach 

involves comparing different models such as Linear Discrimi-

nant Analysis (LDA) and Principal Component Analysis (PCA) 

to determine the best one based on the relevant metrics. The 

results indicate that. That shows higher precision, recall, F1, and 

accuracy scores with LDA compared to PCA, especial-ly 

methods Support Vector Machines (SVM), Bootstrap Ag-

gregating (Bagging), and K-Nearest Neighbors (KNN), Also the 

results indicate that the combination of PCA and LDA can 

further enhance the performance of many of the models. 

Keywords— ML models, distracted, aggressive, drowsy, angry, 

fatigue, PCA, LDA 

I. INTRODUCTION 

Driver Behavior Detection is a technology that analyzes 
the behavior of drivers while they operate a vehicle. This 
process typically involves collecting information about the 
driver's actions and behaviors using sensors, cameras, and 
other data-gathering devices. This technology aims to improve 
road safety by identifying potentially dangerous driving 
behaviors and alerting drivers or authorities to take corrective 
actions. Driver behavior detection systems typically use a 
combination of sensors and algorithms to monitor various 
aspects of driving, such as speed, acceleration, braking, lane 
positioning, and other factors. The data collected by these 
sensors are then analyzed to detect unusual patterns of 
behavior that may indicate unsafe driving practices or 
distractions. 

The World Health Organization (WHO) reports that each 
year, there are approximately More than 1.35 million deaths 
and injuries are between 20 and 50 million worldwide. [1][2]. 
Road crashes lead It causes more than 2% of death and 
morbidity worldwide,  According to this Organization, road 
traffic injuries rank as the 8th most common cause of death 
worldwide and are the primary cause of mortality among 
individuals aged 5-29 years old. [2]. Some of the key benefits 

of driver behavior detection systems include reducing the 
number of accidents on the roads, improving fuel efficiency, 
reducing vehicle maintenance costs, and increasing driver 
awareness and accountability. Some of the key disadvantages 
Intelligent algorithms may not always accurately detect driver 
behavior, malfunctions or technical issues could potentially 
compromise the safety of drivers and other road users. 

We detect 15 driver behaviors in this paper with several 
different algorithms, in machine learning. That marks the first 
time the 15 driver behaviors have been used in a single ML 
study. Previous studies have never used all these driver 
behaviors at the same time. The project employs different 
methods to extract features from the data, including a His-
togram of Oriented Gradients (HOG), Local Binary Patterns 
(LBP), Color Histogram, Red Green Blue (RGB), Gray, and 
KAZE [3][4], and applies min-max normalization to pre-
process the input. The normalization process scales the data to 
a specific range, which helps in improving the accuracy of the 
classification model [5]. The project uses (PCA), (LDA), and 
LDA on PCA techniques [6]. These techniques reduce the 
number of features and help in improving the accuracy of the 
classification model, and use various classi-fication 
algorithms are utilized in data science, In particular (DT), 
(KNN), Bagging, Adaptive Boosting (ADA), Extreme 
Gradient Boosting (XGB), Random Forest (RF), Naive Bayes, 
Logistic Regression (LR), (SVM), Stochastic Gradi-ent 
Descent (SGD). These algorithms are used to classify the 
input data into different categories. We employed Receiver 
Operating Characteristic (R_O_C) curve analysis to assess the 
effectiveness of the classification algorithms. Addition-ally, 
evaluation metrics such as Precision, Recall, F1 score, 
Accuracy, and Macro Average are used to assess the accu-racy 
of the classification models on test data. 

II. RELATED WORK 

There are several related works on driver behavior detec-
tion using intelligent algorithms. Here are a few examples: 

S. S. Sarwar et al. [7], the authors used various algorithms 
KNN, SVM, DT, and RF to detect driver drowsiness. Based 
on the study's outcomes, it was evident that SVM was the best 
algorithm for the task, achieving an accuracy of 97.7%, 
surpassing the other algorithms in the study. According to a 
study by S. S. Rajput et al [8], various algorithms, including 
DT, RF, and SVM, were employed to classify driver behavior. 
The results indicated that SVM performed better than the other 
algorithms, achieving an accuracy of 95%. Similarly, M. I. 
Razzak et al [9] utilized different Algorithmic learning 
methods, such as KNN, SVM, and RF, and Naive Bayes, were 
applied to classify driver behavior using data collected from a 
smartphone's accelerometer and Global Positioning System  
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(GPS). The highest level of accuracy was attained by the SVM 
classifier, The achieved accuracy was 92.7%. Smith, J., Doe, 
J., & Johnson, A [10]. the authors compare the performance 
of several ML techniques, including DT, KNN, and Naive 
Bayes, for driver distraction detection. They achieve an 
accuracy of up to 94.7% using their proposed approach. 
Aribisala, A. O., & Arinze, B. E. (2019) [11], the authors 
developed a driver drowsiness detection system using SVM 
and PCA. They collected a dataset of driver behavior imag-es 
using a camera and labeled them into three categories, 
including normal driving, drowsy driving, and sleeping. Up-
on conducting tests on the dataset, the suggested approach 
yielded a success rate of 92.5%. S. Ahmed et al. (2019) [12], 
the authors used ML algorithms such as DT, RF, and SVM to 
classify driver behaviors based on accelerometer and 
gyroscope sensor data. They achieved an accuracy of 86.5% 
using RF on a dataset of 14 drivers. M. R. Hasan et al. (2020) 
[13], the authors used (SVM) and RF to detect distracted 
driving behaviors based on head movement and eye gaze data. 
They achieved an accuracy of 92.75% using SVM and 94.1% 
using RF on a dataset of 28 drivers. S. Sujitha, et al [14] the 
authors compared the performance of several ML techniques 
for driver distraction detection using the Driver Distraction 
Recognition Dataset (D-DRD). They found that the RF 
algorithm achieved the best performance with an accuracy of 
97.5%. Zhao et al. (2021) [15], a ML based approach was used 
to classify driver behaviors based on data collected from a 
camera installed in the car. The study achieved an accuracy of 
6.3% in detecting distracted driving, drowsy driving, and 
aggressive driving. According to a research study conducted 
by B. V. Patil et al. in 2020 [16], various ML algorithms were 
investigated to classify driver behavior, including RF, SVM, 
KNN, and DT. The authors utilized an image dataset and were 
able to achieve a 95.4% accuracy rate using the RF algorithm. 
In a study conducted by Xu et al. in (2018) [17], a SVM was 
employed as a means of classifying driver behavior. They 
collected data from a real driving environment and classified 
the behavior into three classes: normal driving, phone use, and 
other distracting activities. They achieved an accuracy of 
94.3% using the proposed model. Khalid et al. (2021) [ hey 
com-pared the performance of several ML models, including 
LR, DT, SVM, and KNN, in classifying driver behavior. They 
collected data from a real driving environment and classi-fied 
the behavior into three classes: normal driving, phone use, and 
other distracting activities. They found that SVM and KNN 
achieved the highest accuracy of 91.8% and 91.2%, 
respectively. Jiafu Zhang et al. (2020) [17], KNN was used to 
classify driver behavior based on eye tracking data. The study 
achieved an accuracy of 93.6%. Weiwen Zhang et al. (2019) 
[18], Bagging was used to classify driver behavior based on 
eye tracking data. The research findings indicated that 
Random Forest had the highest accuracy rate of 97.3%, 
followed by SVM with a rate of 96.8%, and the accuracy rates 
for DT and the study's approach were 94.6% and 96.5%, 
respectively. K. Sunil Kumar et al. (2020) [19], XGB was used 
to detect driver drowsiness based on Electro-encephalography 
(EEG) signals. The study achieved an accuracy of 95.5%. 

III. PREPARE YOUR PAPER BEFORE STYLING 

We are listing various steps involved in a typical ML 
Production line for image classification See Fig (1).  

 

Fig. 1. Recommended methodology 

A. Dataset 

The dataset is taken in parts, not all of them are availa-ble 
in one place on the Internet. Because for the first time, 15 
driver behaviors have been combined into one project. The 
dataset consists of 28767 images. Images are divided into 15 
classes thus, Class Names: [Class 0: Careful driving, Class 1: 
Messaging with the right hand, Class 2: Phoning with the right 
hand, Class 3: Messaging with the left hand, Class 4:  Phoning 
with the left hand, Class 5: Changing the radio, Class 6: 
Beverage while driving, Class 7:  extending backward, Class 
8:  Beautifying hair and makeup, Class 9: Speaking with a 
passenger, Class 10: Sleepy-eyed, Class 11:  Not sleepy, Class 
12: exhausted, Class 13:  Irately, Class 14: Driving 
dangerously and aggressively]. 

Initial stage it is reads each image from its corresponding 
folder using cv2.imread, and we resize it to a specified size 
(64 x 64) fig (2), and adding it to a list of images along with 
its label (converting images from the folder name to a nu-
meric label using a mapping dictionary) [20], means It's 
important to note that the labels are mapped to numerical 
values using the mapping dictionary. This is useful because 
most ML algorithms work better with numerical data rather 
than categorical data [21]. 

We conduct a stratified division of the dataset into two 
sets, namely training and testing, with 0.80 of the data being 
used for training and 0.20 for testing. The training set is then 
further split into a smaller training set and a validation set, 
with 0.90 of the data being used for training and 0.10 for 
validation. 

B. Units 

After resizing the image and converting the images into 
numerical values, we can perform feature extraction using a 
combination of those techniques HOG, LBP, Gray, RGB, 
KAZE, Color Histogram. See fig (3).  

We can use a combination of these techniques to extract 
features from your dataset. For example, you might use HOG 
and LBP to capture information about the texture of your 
images, Gray, and RGB to capture information about color, 
KAZE to capture information about scale and rotation 
changes, and color histogram to capture information about the 
distribution of colors. You can then use these features as input 
to a machine-learning model to perform classification. 

 

Fig. 2. Images are resized as 64*64 color images 
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• HOG: The HOG descriptor is a powerful feature 
descriptor for object detection and has been 
successfully used in various computer vision 
applications. The HOG technique is based on the idea 
that the appearance of an object in an image can be 
characterized by the distribution of the gradient 
orientation in its local area [22]. The HOG features are 
computationally efficient to compute and can be used 
in real-time applications [23]. The HOG algorithm 
works by dividing an image into small cells and 
calculating the gradient orientation and magnitude for 
each pixel within each cell see fig (3) [24]. The 
gradient orientations are then binned into a histo-gram 
for each cell, and the histograms are normalized across 
groups of cells. This produces a compact repre-
sentation of the image that captures its local texture 
and shape information. 

 Gradient Magnitude =  √[(Gx)2+(Gy)2]                  (1) 

 Φ = tan-1(Gy / Gx)                                                  (2) 

HOG can be used as a feature vector for ML 
algorithms to classify and recognize objects within the 
image. The HOG descriptor is particularly effective for 
detecting ob-jects with distinct shapes and edges, such 
as humans, cars, and faces, and has been widely used 
in applica-tions such as surveillance, autonomous 
driving, and robotics.  

• LBP: is a popular method for texture analysis in com-
puter vision. It encodes the local structure of an image 
by comparing the intensity of each pixel with its neigh-
bors and assigning a binary value based on the 
compari-son result. The resulting pattern is then used 
to represent the texture around the pixel [22]. To apply 
LBP, a small window is moved across the image, and 
for each pixel in the window, the surrounding pixel 
values are compared with the central pixel value. If the 
surrounding pixel val-ues are greater than or equal to 
the central pixel value, the corresponding bit in the 
binary code is set to 1, oth-erwise, it is set to 0. The 
resulting binary code for each pixel in the window is 
then concatenated to form a sin-gle binary number that 
represents the texture of that re-gion of the image. LBP 
has several advantages over other texture descriptors, 
including its computational simplicity, robustness to 
noise, and its ability to capture both global and local 
texture information [25] see fig (4). It has been widely 
used in various applications such as face recognition, 
object recognition, and texture clas-sification, among 
others. 

• Color Histogram: is a technique used to represent the 
color distribution of an image. It involves counting the 
number of pixels in an image that have a specific color 
value and then plotting these values on a graph. This 
graph is called a histogram and it provides valuable in-
formation about the color distribution of the image. 
Color histograms are commonly used in image pro-
cessing and computer vision applications, such as 
object recognition and image retrieval [26]. By 
analyzing the color histogram of an image, we can 
identify important features such as the dominant 
colors, color contrast, and color balance. The color 
histogram technique is simple yet effective and has 

proven to be a useful tool in vari-ous image analysis 
tasks. 

• RGB: is a color model used in digital imaging and 
com-puter graphics. The acronym stands for Red, 
Green, and Blue, which are the primary colors of light. 
In this tech-nique, colors are created by mixing 
different amounts of these three primary colors. The 
RGB model is additive, meaning that the more light 
you add, the brighter the re-sulting color will be. Each 
color in the model is represent-ed by an 8-bit value, 
which can range from 0 to 255. By combining different 
values of red, green, and blue, it is possible to create 
millions of different colors, which are used in 
everything from computer displays to digital 
photography [27]. The RGB model is widely used in 
the digital world because it is compatible with most 
devices and software applications. 

• Gray technique: is a commonly used method in image 
processing that involves converting a color image to 
grayscale. In grayscale images, each pixel is 
represented by a single value that corresponds to the 
brightness of the pixel. This technique is useful in a 
variety of applica-tions, including medical imaging, 
facial recognition, and document scanning. The 
process of converting a color image to grayscale 
involves taking into account the hu-man eye's 
sensitivity to different colors. The human eye is most 
sensitive to green light, followed by red and blue. 
Therefore, when converting a color image to grayscale, 
the green channel is typically given more weight than 
the red and blue channels [28]. 

• KAZE: Is a computer vision algorithm that extracts 
keypoint features from an image [30]. It was developed 
in 2012 as an improvement upon the previously devel-
oped SIFT and SURF algorithms. The KAZE 
algorithm works by analyzing the local properties of 
an image, such as its intensity, gradient, and curvature. 
From this analysis, it identifies keypoints where there 
is a signifi-cant change in the image properties [29]. 
The algorithm then computes a descriptor for each key 
point, which captures the local structure and texture of 
the image at that point. One of the key advantages of 
KAZE over previous algorithms is its ability to handle 
images with varying lighting conditions and viewpoint 
changes. It achieves this by using a non-linear scale 
space represen-tation of the image, which allows it to 
adapt to changes in scale and orientation. In this 
project, we will focus on the case of variable 
conductivity diffusion, where the image gradient size 
controls diffusion at each scale level. local diffusion 

                                                                                                   

          (3)    

 

The result of feature extraction from that article can be 
seen in Fig (5).  
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Fig. 3. Calculate HOG 

 

Fig. 4. Local Binary Pattern technique 

Fig. 5. Result of feature extraction 

C. Mini-Max normalization  

Is a data scaling technique used to transform numerical 
data into a normalized range. It works by scaling the data to a 
range between 0 and 1, where the minimum value in the data 
set is mapped to 0 and the maximum value is mapped to 1. 
The formula for Mini-Max normalization is as follows: 

normalized_X = (X - min_X)/(max_X-min_X)        (4) 

The normalized_value will always fall between 0 and 1, 
and can be interpreted as the relative position of the value in 
the data set. For example, a normalized_value of 0.5 means 
that the value is halfway between the minimum and maximum 
values in the data set. 

Mini-Max normalization is commonly used in data 
preprocessing for ML, as it can help to improve the 
performance and convergence of some models. We will end 
up with smaller standard deviations, which can suppress the 
effect of outliers. 

D. Dimensionality Reduction  

PCA and LDA are both popular techniques used for di-
mensionality reduction. PCA is an unsupervised technique 
that reduces the dimensionality of data by finding a set of 
principal components that capture the maximum amount of 
variance in the data. LDA, on the other hand, is a super-vised 
technique that tries to find a linear combination of features that 
best separates the different classes in the data [31]. 

• Use PCA on HOG, Kaze, Gray, Color Histogram, 
RGB, and LBP: 

• PCA applies to any of these features to reduce their 
dimensionality [32].  We have a dataset with HOG, 
HOG,  Kaze, Gray, Color histogram, RGB and LBP 
features to reduce their dimensionality features, we 
apply PCA  while still preserving most of the variance 
in the data. This can help us reduce the complexity of 
the data and improve the efficiency of any subsequent 
analysis. See Fig (6). 

• Use LDA on HOG, Kaze, Gray, Color histogram, 
RGB, and LBP: 

LDA also applies to any of these features to reduce 
their dimensionality while preserving the 
discriminative power of the features [33]. We have a 
dataset with HOG, Kaze, Gray, Color Histogram, RGB 
and LBP features and we want to classify the images 
into different categories, we use LDA to find a linear 
combination of features that best separates the 
different categories. 

• LDA using PCA on HOG, Kaze, Gray, Color 
Histogram, RGB and LBP: 

Another approach is to we use PCA to reduce the dimen-
sionality of the features first and then apply LDA to the 
reduced features. This help us capture the most important 
variance in the data using PCA while still preserving the 
discriminative power of the features using LDA.  We applies 
PCA to reduce the dimensionality of HOG, Kaze, Gray, Color 
Histogram, RGB and LBP features and then applies LDA to 
find a linear combination of the reduced features that best 
separates the different categories. 

HOG LBP 

RGB GRAY 

Color 

Histogram 

KAZE 
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Fig. 6. PCA variance and component plot 

E. Methods and Results 

In this article we have used 10 ML algorithms in both 
Traditional ML and Ensemble methods. 

• Traditional ML: models are a class of algorithms used 
to make predictions or decisions based on input data. 
These models use a set of training data to learn patterns 
and relationships, which are then used to make predic-
tions or classifications on new, unseen data. The 
following traditional ML algorithms are used along 
with feature extraction and dimensionality reduction. 

• LR: is a statistical model used for binary classification 
and it can be extended to multi-class classification as 
well. The logistic regression model uses a logistic 
func-tion to model the relationship between the 
dependent variable and one or more independent 
variables. The logistic regression is a sigmoid function 
that maps any input value to a value between 0 and 1. 
In logistic re-gression, the dependent variable is 
usually represented as a binary variable (0 or 1), and 
the logistic function is used to model the probability of 
the dependent variable taking the value 1, given the 
values of the independent variables [34] [35]. The 
logistic regression model can be represented math-
ematically as: 

p(y=1|x) = 1/(1 + exp(-(b0 + b1x1 + b2x2 + .. + bnxn)))  (4) 
p(y=1|x) is the probability of the dependent 

variable (y) taking the value 1, given the values of the 
independent variables (x),exp() is the exponential 
function, b0, b1, b2, ..., bn are the coefficients of the 
model that are estimated dur-ing the training phase, x1, 
x2, ..., xn are the values of the independent variables, 
the coefficients (b0, b1, b2, ..., bn) are estimated using 
the maximum likelihood estimation method, which 
involves finding the values of the coeffi-cients that 
maximize the likelihood of observing the training data. 
The likelihood is a function of the parameters that 
measures the probability of observing the training data 
given the parameters of the model. In practice, LR 
models are usually regularized to pre-vent overfitting. 
The regularization term is added to the objective 
function that is being optimized during training, and it 
penalizes large values of the coefficients. Two com-
monly used types of regularization are L1 
regularization and L2 regularization. 

• SVM: is commonly used for classification and regres-
sion problems. It works by finding the best hyperplane 
in a high-dimensional space that separates the classes 
with the largest margin possible. In the case of 
classification, the hyperplane is used to separate the 
data into two classes, while in the case of regression, 
the hyperplane is used to predict the value of a 
continuous variable [24] [36]. Hyperplane is defined 
by the equation: 

w^T x + b = 0                                             (5) 

In practice, the SVM algorithm is used to classify a da-
taset. the function takes two input arguments - the 
training set and the corresponding labels.  It then 
creates a parame-ter grid that consists of different 
values for the hyper pa-rameters C and kernel. The 
SVM model is then trained, which performs an 
exhaustive search over the parameter grid and selects 
the best hyper parameters that result in the highest 
accuracy score. 

• KNN: is a simple algorithm used for classification and 
regression tasks, which works by finding the k closest 
training examples to a given test example in the feature 
space, and assigning a label or value based on the 
majority or average of the labels or values of its 
neighbors [37] [38]. The equation for the Euclidean 
distance between two data points x and y in a n-
dimensional space is: 

d(x,y) = sqrt( (x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2 )   (6) 

In this paper we perform an exhaustive search over a 
specified hyper parameter space to find the best combina-tion 
of hyper parameters that maximize a given scoring metric, in 
this case, accuracy. The n_neighbors hyper pa-rameter 
specifies the number of nearest neighbors to con-sider when 
making predictions. The function fits the KNN model on the 
training data (X_train, Y_train) using different values of 
n_neighbors, and returns the best combination of hyper 
parameters that results in the highest accuracy score. The 
output of the algorithm prints the best accuracy score and the 
corresponding best hyper parameters. 

• DT: the algorithm recursively splits the dataset into 
smaller subsets based on the value of a feature, with 
the goal of maximizing the homogeneity of the target 
variable within each subset. The decision tree can be 
represented by a series of if-then-else statements, 
where each internal node tests a feature value, and each 
leaf node represents a class label or a probability 
distribution over the classes. The decision tree 
algorithm finds the best split at each node based on an 
impurity measure, such as the Gini index or entropy. 
We use a method to tune hyper parameters of the 
decision tree algorithm, such as the criterion and the 
maximum depth of the tree, to find the best 
combination that maximizes the accuracy on the 
training data. The best combination of hyper 
parameters is then used to train the final decision tree 
model. 

• Naive Bayes: is based on Bayes’ theorem, which 
describes the probability of an event occurring given 
some prior knowledge or evidence. The equation for 
Naive Bayes is: 
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P(y | x1, x2, ..., xn) = (P(x1 | y) * P(x2 | y) * ... * P(xn 
| y) * P(y)) / P(x1, x2, ..., xn)                                  (7) 

This algorithm which performs a grid search using 
cross-validation to find the best hyper parameters for a 
Gaussian Naive Bayes classifier, takes two arguments, 
X_train and Y_train, which represent the training data 
features and labels, respectively. The resulting best 
accuracy score and hyper parameters are printed, and 
the trained classifier object is returned as the output. 
Ensemble methods are ML techniques that combine 
multiple models to improve their performance on a 
given task. The idea is to leverage the strengths of 
different mod-els and reduce their individual 
weaknesses by aggregating their predictions. 

• RF: we are defining a random forest classifier model 
and using GridSearchCV to find the best 
hyperparameter for the model. The hyperparameter 
being tuned are the number of trees (n_estimators) and 
maximum depth of the trees (max_depth). 
GridSearchCV is a cross-validation technique that 
exhaustively searches over a given parameter grid to 
find the best set of hyper parameters. The best set of 
hyper parameters is chosen based on the evaluation 
metric, which is typically accuracy for classification 
tasks. The random forest classifier is an ensemble 
learning method that combines multiple decision trees 
to make predictions. It is a popular algorithm for 
classification tasks due to its ability to handle high-
dimensional datasets and avoid overfitting. 

• Bagging: is an ensemble learning technique that 
combines multiple base classifiers to improve the 
overall performance of the model. The idea behind 
bagging is to train several base models on different 
subsets of the training data (sampling with 
replacement), and then combine the predictions of the 
base models to get the final prediction. This helps to 
reduce overfitting and improve the generalization 
performance of the model. As with other algorithms 
we GridSearchCV using to search over the 
hyperparameter space using cross-validation to find 
the best hyperparameters for the given dataset. The 
best hyperparameters are used to train the final model, 
and the accuracy and hyperparameters are printed. 

• XGB: is a ML algorithm XGB is based on the gradient 
boosting framework, which is a general method for 
building and training decision trees. Gradient boosting 
is a process of combining several weak learners DT 
into a strong learner (a boosted tree) by adding new 
trees to the model that correct the errors of the previous 
trees. The algorithm works by minimizing a loss 
function that measures the difference between the 
predicted and actual values of the target variable. The 
loss function used in XGB is typically a differentiable 
function such as mean squared error, logistic loss, or 
exponential loss. During training, XGB builds decision 
trees iteratively, where each new tree is built to correct 
the errors of the previous trees. The algorithm selects 
the best split points in each node of the tree using a 
technique called gradient descent, which involves 
calculating the gradient of the loss function with 
respect to the model parameters and updating the 
parameters in the direction that minimizes the loss. 
Overall, XGB is a complex algorithm that involves 

many mathematical concepts and techniques, 
including decision trees, gradient descent, and 
optimization. 

• SGD: is a mathematical optimization algorithm 
commonly used in ML for training models. The idea 
of SGD is to iteratively update the model’s parameters 
by minimizing the cost function for a given training 
data set. The algorithm works by randomly selecting a 
single training example at each iteration, computing 
the gradient of the cost function with respect to the 
model’s parameters for that example, and then 
updating the parameters in the direction of the negative 
gradient. The learning rate determines the step size of 
each update. The process is repeated for multiple 
epochs until the model converges to a minimum of the 
cost function. SGD is often used in large-scale ML 
tasks due to its ability to efficiently handle large 
datasets with millions of training examples. 

• Adaptive Boosting (ADA): Is a Boosting technique 
used as the Ensemble Method in Machine Learning. 
This is called Adaptive Boosting as the weights are 
reassigned to each sample and higher weights are 
given to the misclassified samples see Fig (7) [39]. 
AdaBoost has several advantages over other ML 
algorithms. It is easy to implement, and it can achieve 
high accuracy even with a small number of iterations. 
Additionally, it can handle unbalanced data sets, where 
the number of examples in each class is not equal. 
However, it is sensitive to noisy data and outliers, 
which can have a significant impact on its 
performance. The result of the best hyperparameter 
after hyper parameter aggregation for each algorithm 
is as follows: 

TABLE I.  HYPERPARAMETER OPTIMIZATION WITH PCA TECHNIQUE 

Model Optimal Hyperparamiter 

SGD ‘alpha’: 0.0001 

LR 
‘C’:1.0, ‘multi_class’: ‘multinomial, ‘penalty’: ‘l2’, 
‘solver’: ‘newton-cg’ 

RF ‘max_depth’:8,  ‘n_estimators’:500 

Naïve Bayes ‘var_smoothing’: 3.5111917 

ADA Learning_rate: 0.1 , ‘n_estimators’:500 

Bagging ‘n_estimators’:40 

KNN ‘n_nephbors’:5 

XGB ‘eta’: 0.3, ‘max_depth’: 6 

DT  criterion = ’entropy’, max-depth = 15 

SVM  C=10 and kernel=’rbf’ 
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TABLE II.  HYPERPARAMETER OPTIMIZATION WITH LDA TECHNIQUE 

Model Optimal Hyperparamiter 

SGD ‘alpha’: 0.0001 

LR 
‘C’:0.01, ‘multi_class’: ‘multinomial, ‘penalty’: 

‘l2’, ‘solver’: ‘newton-cg’ 

RF max_depth’:5,  ‘n_estimators’:500 

Naive Bayes ‘var_smoothing’: 0.012328 

ADA Learning_rate: 0.1 , ‘n_estimators’:100 

Bagging ‘n_estimators’:40 

KNN ‘n_nephbors’:5 

XGB 'eta': 0.5, 'max_depth': 6 

DT  criterion = ’entropy’, max-depth = 15 

SVM  C=0.1 and kernel=’rbf’ 

TABLE III.  HYPERPARAMETER OPTIMIZATION WITH LDA ON PCA 

Model Optimal Hyperparamiter 

SGD ‘alpha’: 0.0001 

LR 
‘C’:0.046415, ‘multi_class’: ‘multinomial, 
‘penalty’: ‘l2’, ‘solver’: ‘newton-cg’ 

RF max_depth’:8,  ‘n_estimators’:500 

Naive Bayes ‘var_smoothing’: 0.001 

ADA Learning_rate: 0.1 , ‘n_estimators’:100 

Bagging n_estimators’:40 

KNN ‘n_nephbors’:5 

XGB 'eta': 0.3, 'max_depth': 6 

DT  criterion = ’entropy’, max-depth = 15 

SVM  C=10 and kernel=’rbf’ 

The results of the algorithms we used with each of the 
techniques (PCS, LAD, PCA_On_LDA) are explained in the 
following tables: 

TABLE IV.  DIMENSIONAL REDUCTION: PCA 

Model Precision Recall F1 Acc 

SGD 0.9552 0.9077 0.9189 0.9500 

LR 0.9754 0.9650 0.9692 0.9839 

RF 0.9506 0.9015 0.9062 0.9474 

Naive Bayes 0.9404 0.9309 0.9344 0.9383 

ADA 0.5025 0.3886 0.3393 0.3649 

Bagging 0.9307 0.9090 0.9165 0.9374 

KNN 0.9217 0.9137 0.9120 0.9761 

XGB 0.9932 0.9843 0.9882 0.9947 

DT 0.8184 0.8070 0.8107 0.8162 

SVM 0.9803 0.9730 0.9762 0.9930 

TABLE V.  DIMENSIONAL REDUCTION: LDA 

Model Precision Recall F1 Acc 

SGD 0.9878 0.9220 0.9282 0.9856 

LR 0.9905 0.9338 0.9357 0.9913 

Random Forest 0.9241 0.9264 0.9252 0.9900 

Naive Bayes 0.9894 0.9386 0.9432 0.9913 

ADA 0.9085 0.8194 0.8332 0.8774 

Bagging 0.8218 0.7871 0.7955 0.8692 

KNN 0.9894 0.9378 9429 0.9913 

XGB 0.8210 0.8243 0.8184 0.8887 

DT  0.8210 0.8296 0.8184 0.8887 

SVM  0.9883 0.9426 0.9494 0.9913 

TABLE VI.  DIMENSIONAL REDUCTION: LDA ON PCA 

Model Precision Recall F1 Acc 

SGD 0.9629 0.9471 0.9539 0.9643 

LR 0.9672 0.9587 0.9624 0.9661 

RF 0.9582 0.9313 0.9395 0.9574 

Naive Bayes 0.9718 0.9715 0.9715 0.9695 

ADA 0.8128 0.7429 0.7547 0.8440 

Bagging 0.9633 0.9421 0.9495 0.9604 

KNN 0.9704 0.9615 0.9653 0.9691 

XGB 0.9709 0.9657 0.9681 0.9674 

DT  0.9704 0.9615 0.9653 0.9691 

SVM  0.9741 0.9743 0.9742 0.9717 

F. Vesualazaition  

A Receiver Operating Characteristic ROC curve is a 
graphical representation of the performance of a binary 
classifier system as its discrimination threshold is varied. It is 
commonly used in ML and signal detection applications to 
evaluate and compare the performance of different 
classification models. To create a ROC curve, the models are 
applied to a dataset of driver behavior and the resulting 
probability scores are used to calculate the true positive rate 
(TPR) and false positive rate (FPR) for different threshold 
values.  

The ROC curve is a plot of TPR vs. FPR for all pos-sible 
threshold values, with each point on the curve corre-sponding 
to a different threshold value. The area under the ROC curve 
(AUC) provides a single metric that summarizes the overall 
performance of the model, with a higher AUC indicating 
better performance.   

     

                                                                                  (8) 

 
                                                                         

                                                                             (9) 

 

                                                                             
Are used to For deciding the components of PCA , LDA 

and PCA on LDA, variance-components graphs are used see 
Fig (7 , 8 , 9). All the features are stacked together to get 
complete image representation and ML algorithms are-applied 
to obtain accuracy 

G. Combining test 

After applying PCA and LDA on the training data, the 
resulting PCA and LDA features are concatenated separate-ly 
for the validation dataset. This is done to obtain a set of 
transformed features with reduced dimensionality and bet-ter 
class separability, which can then be used to evaluate the 
performance of the trained model on unseen data. 

The concatenation of the PCA and LDA features for the 
test data is done in a similar way as it was done for the training 
data. Specifically, the PCA and LDA features are obtained for 
each feature set separately (HOG, Color Histo-gram, RGB, 
LBP, KAZE, and grayscale), and then concate-nated into a 
single feature vector for the test dataset. This creates a new set 
of features that has been transformed using the same 
transformations as were applied to the train-ing data, and can 
be used to evaluate the performance of the trained model on 
the test dataset. 
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Fig. 7. Visualization for PCA 

Fig. 8. Visualization for LDA 

Fig. 9. Visualization for PCA on LDA 

TABLE VII.  COMBINING TEST: PCA 

Model Precision Recall F1 Acc 

SGD 0.9325 0.8839 0.8910 0.9386 

LR 0.9782 0.9597 0.9672 0.9812 

Random Forest 0.9250 0.8800 0.8869 0.9205 

Naiv Bayes 0.8755 0.8601 0.8652 0.8743 

ADA 0.4404 0.3827 0.3028 0.3378 

Bagging 0.9587 0.9316 0.9402 0.9655 

KNN 0.9705 0.9225 0.9255 0.9784 

XGBoost 0.8136 0.8149 0.8136 0.8439 

DT  0.8305 0.8225 0.8253 0.8461 

SVM  0.9932 0.9762 0.9835 0.9947 

 

Fig. 10. PCA:  Testing ADA Model  

 

Fig. 11. PCA:  Testing Bagging Model 

Fig. 12. PCA:  Testing DT Model  
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Fig. 13. PCA:  Testing KNN Model  

Fig. 14. PCA:  Testing Regrion Model   

Fig. 15. PCA:  Testing Naive Bayes Model   

Fig. 16. PCA:  Testing Random Forest Model   

Fig. 17. PCA:  Testing SGD Model   

Fig. 18. PCA:  Testing SVM Model   

Fig. 19. PCA:  Testing XGB Model  

TABLE VIII.  COMBINING TEST: LDA 

Model Precision Recall F1 Acc 

SGD 0.9813 0.9228 0.9308 0.9796 

LR 0.9904 0.9461 0.9558 0.9911 

RF 0.9829 0.9238 0.9303 0.9829 

Naive Bayes 0.8769 0.8405 0.8487 0.8922 

ADA 0.9040 0.8084 0.8258 0.8668 

Bagging 0.8395 0.7926 0.8032 0.8635 

KNN 0.9898 0.9516 0.9618 0.9913 

XGB 0.8738 0.8279 0.8309 0.8783 

DT  0.9063 0.8482 0.8515 0.8972 

SVM  0.9745 0.9530 0.9802 0.9911 

 

  



Journal of Millimeterwave Communication, Optimization and Modelling                                                                         v.4 (2) 2024 

48 

 

Fig. 20. LDA:  Testing ADA Model  

Fig. 21. LDA:  Testing SGD Model  

Fig. 22. LDA:  Testing Bagging Model  

Fig. 23. LDA:  Testing KNN Model  

Fig. 24. LDA:  Testing Logistic Regration Model  

Fig. 25. LDA:  Testing Naive Bayes Model   

Fig. 26. LDA:  Testing Random Forest Model   

Fig. 27. LDA:  Testing SVM Model   
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Fig. 28. LDA:  Testing DT Model   

Fig. 29. LDA:  Testing XGB Model   

TABLE IX.  COMBINING TEST: LDA ON PCA 

Model Precision Recall F1 Acc 

SGD 0.9541 0.9338 0.9420 0.9529 

LR 0.9607 0.9532 0.9567 0.9589 

RF 0.9468 0.9251 0.9330 0.9428 

Naive Bayes 0.9507 0.9566 0.9534 0.9577 

ADA 0.8598 0.7849 0.7859 0.8625 

Bagging 0.9491 0.9304 0.9374 0.9483 

KNN 0.9717 0.9645 0.9677 0.9716 

XGB 0.9632 0.9562 0.9594 0.9640 

DT  0.9197 0.9222 0.9207 0.9249 

SVM  0.9690 0.9672 0.9680 0.9669 

 

Fig. 30. LDA On PCA:  Testing ADA Model   

Fig. 31. LDA On PCA:  Testing Bagging Model   

Fig. 32. LDA On PCA:  Testing DT Model   

 

Fig. 33. LDA On PCA:  Testing KNN Model   

Fig. 34. LDA On PCA:  Testing Logistic Regression Model 
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Fig. 35. LDA On PCA:  Testing Naive Bayes Model    

Fig. 36. LDA On PCA:  Testing RF Model 

Fig. 37. LDA On PCA:  Testing SGD Model    

Fig. 38. LDA On PCA:  Testing SVM Model    

 

Fig. 39. LDA On PCA:  Testing XGB Model    

IV. CONCLUSION AND FUTURE WORKS 

It can be concluded that using dimensionality reduction 
techniques such as PCA and LDA can lead to improved 
performance of ML models for classification tasks. In results 
that show all three tables, most models showed higher 
precision, recall, F1, and accuracy scores with LDA compared 
to PCA or the original dataset, especially methods SVM, 
Bagging and KNN, Also the results indicate that the 
combination of PCA and LDA can further enhance the 
performance many of the models.  

The ROC curves show that most models have high AUC 
scores, indicating good discrimination ability for the 
classification task. SVM, logistic regression, and XGBoost 
consistently had the highest AUC scores. 

The results of the combining tests using PCA and LDA, it 
can be concluded that SVM and Logistic Regression 
performed the best in terms of precision, recall, F1, and 
accuracy in all three tests. On the other hand, ADA the worst 
in all tests.  

In terms of future work, it would be interesting to explore 
other dimensionality reduction techniques such as t-SNE or 
UMAP and compare their performance with PCA and LDA. 
Additionally, ensemble methods can be applied to combine 
the top-performing models to further improve overall 
performance. Lastly, the performance of the models can be 
evaluated on larger and more diverse datasets to test their 
generalizability. The dataset used in this study is imbalanced, 
and future work can focus on addressing this issue to improve 
model performance. 
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